การเเก้สมการกำลังสอง

สูตรกำลังสอง

สมการกำลังสองใดๆ ที่มีสัมประสิทธิ์เป็นจำนวนจริง (หรือจำนวนเชิงซ้อน) จะมีรากของสมการ 2 คำตอบเสมอ ซึ่งอาจจะเท่ากันก็ได้ โดยที่รากของสมการสามารถเป็นได้ทั้งจำนวนจริงหรือจำนวนเชิงซ้อน สามารถคำนวณได้จากสูตร

x = \frac{-b \pm \sqrt {b^2-4ac}}{2a}

ซึ่งเครื่องหมายบวกและลบเป็นการแทนความหมายของทั้งสองคำตอบ ได้แก่

x_+ = \frac{-b + \sqrt {b^2-4ac}}{2a}; \quad x_- = \frac{-b - \sqrt {b^2-4ac}}{2a}

ดังนั้นค่าของสมการจะเท่ากับฟิวชั่นของสมการ

[แก้] ดิสคริมิแนนต์

ดิสคริมิแนนต์ในกรณีต่างๆ จุดที่ตัดแกน x คือรากของสมการในจำนวนจริง (ไม่เกี่ยวกับการหงายหรือคว่ำของกราฟ)

จากสูตรด้านบน นิพจน์ที่อยู่ภายใต้เครื่องหมายรากที่สอง

Δ

จะเรียกว่า ดิสคริมิแนนต์ (discriminant) ของสมการกำลังสอง

ดิสคริมิแนนต์เป็นตัวบ่งบอกว่าสมการกำลังสองจะมีคำตอบของสมการเป็นประเภทใดประเภทหนึ่ง ดังต่อไปนี้

  • ถ้าดิสคริมิแนนต์เป็นค่าบวก ดังนั้นจะมีรากของสมการ 2 ค่าที่แตกต่างกัน และเป็นจำนวนจริงทั้งคู่ สำหรับกรณีที่สัมประสิทธิ์เป็นจำนวนเต็ม และดิสคริมิแนนต์เป็นกำลังสองสมบูรณ์ ดังนั้นรากของสมการจะเป็นจำนวนตรรกยะ ส่วนในกรณีอื่นจะเป็นจำนวนอตรรกยะ
  • ถ้าดิสคริมิแนนต์เป็นศูนย์ ดังนั้นจะมีรากของสมการ 2 ค่าที่เท่ากัน (หรือมีเพียงค่าเดียว) และเป็นจำนวนจริง รากของสมการนี้จะมีค่าเท่ากับ
    x = -\frac{b}{2a} \!
  • ถ้าดิสคริมิแนนต์เป็นค่าลบ จะไม่มีคำตอบเป็นจำนวนจริง แต่จะเป็นจำนวนเชิงซ้อน 2 จำนวนที่ต่างกัน ซึ่งเป็นสังยุคของกันและกัน นั่นคือ
    x

เมื่อ i คือหน่วยจินตภาพที่นิยามโดย i2 = −1

[แก้] การแยกตัวประกอบ

พจน์นี้

x - r \!

จะเรียกว่าเป็นตัวประกอบของพหุนาม

ax^2 + bx + c \!

ก็ต่อเมื่อ r เป็นคำตอบของสมการกำลังสอง

ax^2 + bx + c = 0 \!

ซึ่งจากสูตรกำลังสอง เราสามารถแยกตัวประกอบของพหุนามได้เป็น

ax^2 + bx + c = a \left( x - \frac{-b + \sqrt {b^2-4ac}}{2a} \right) \left( x - \frac{-b - \sqrt {b^2-4ac}}{2a} \right)

ในกรณีพิเศษ เมื่อรากของสมการกำลังสองมีเพียงค่าเดียว (คือคำตอบทั้งสองเท่ากัน) พหุนามกำลังสองจะสามารถแยกตัวประกอบได้เป็น

ax^2+bx+c = a \left( x + \frac{b}{2a} \right)^2 \!

ใส่ความเห็น

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / เปลี่ยนแปลง )

Twitter picture

You are commenting using your Twitter account. Log Out / เปลี่ยนแปลง )

Facebook photo

You are commenting using your Facebook account. Log Out / เปลี่ยนแปลง )

Google+ photo

You are commenting using your Google+ account. Log Out / เปลี่ยนแปลง )

Connecting to %s